Generalized Pattern Search and Mesh Adaptive Direct Search Algorithms for Protein Structure Prediction
نویسندگان
چکیده
Proteins are the most interesting molecular entities of a living organism and understanding their function is a an important task to treat diseases and synthesize new drugs. It is largely known that the function of a protein is strictly related to its spatial conformation: to tackle this problem, we have proposed a new approach based on the class of pattern search algorithms that are largely used in optimization of real problems. The results obtained by this approach are interesting in terms of the quality of the structures found.
منابع مشابه
Convergence of Mesh Adaptive Direct Search to Second-Order Stationary Points
A previous analysis of second-order behavior of generalized pattern search algorithms for unconstrained and linearly constrained minimization is extended to the more general class of mesh adaptive direct search (MADS) algorithms for general constrained optimization. Because of the ability of MADS to generate an asymptotically dense set of search directions, we are able to establish reasonable c...
متن کاملMesh Adaptive Direct Search Algorithms for Constrained Optimization
This paper introduces the Mesh Adaptive Direct Search (MADS) class of algorithms for nonlinear optimization. MADS extends the Generalized Pattern Search (GPS) class by allowing local exploration, called polling, in a dense set of directions in the space of optimization variables. This means that under certain hypotheses, including a weak constraint qualification due to Rockafellar, MADS can tre...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملNonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search
This paper proposes a way to combine the Mesh Adaptive Direct Search (MADS) algorithm, which extends the Generalized Pattern Search (GPS) algorithm, with the Variable Neighborhood Search (VNS) metaheuristic, for nonsmooth constrained optimization. The resulting algorithm retains the convergence properties of MADS, and allows the far reaching exploration features of VNS to move away from local s...
متن کاملSecond-Order Convergence of Mesh-Adaptive Direct Search
Abstract: A previous analysis of second-order behavior of pattern search algorithms for unconstrained and linearly constrained minimization is extended to the more general class of mesh adaptive direct search (MADS) algorithms for general constrained optimization. Because of the ability of MADS to generate an asymptotically dense set of search directions, we are able to establish reasonable con...
متن کامل